Modelling 1

 SUMMER TERM 2020

LECTURE 9

Eigen- and Singular Values

Eigenvectors and Eigenvalues

Eigenvectors \& Eigenvalues

Definition:

- Linear map A, non-zero vector \mathbf{x} with

$$
\mathbf{A x}=\lambda \mathbf{x}
$$

- λ an is eigenvalue of \mathbf{A}
- \mathbf{x} is the corresponding eigenvector

Example

Intuition:

- In the direction of an eigenvector, the linear map acts like a scaling

- Example:
- Two eigenvalues (0.5 and 2)
- Two eigenvectors
- Standard basis $\left\{\binom{1}{0},\binom{0}{1}\right\}$: not eigenvectors

Eigenvectors \& Eigenvalues

Theorem

- All real, symmetric matrices can be diagonalized
- Orthogonal eigenbasis $\mathbf{U}=\left(\mathbf{u}_{1}|\ldots| \mathbf{u}_{d}\right)$
- $\mathbf{A}=\mathbf{U}\left(\begin{array}{lll}\lambda_{1} & & \\ & \ddots & \\ & & \lambda_{d}\end{array}\right) \mathbf{U}^{\mathrm{T}}$
- Symmetric matrices encode only non-uniform scaling

Diagonalization

Eigenvalue decomposition (diagonalization)

Always possible for symmetric matrices

- Symmetric: $\mathbf{A}^{\mathbf{T}}=\mathbf{A}$

Computation

Simple algorithm

- "Power iteration" for symmetric matrices
- Computes largest eigenvalue even for large matrices
- Algorithm:
- Start with a random vector (maybe multiple tries)
- Repeatedly multiply with matrix
- Normalize vector after each step
- Repeat until ratio before / after normalization converges (this is the eigenvalue)
- Intuition:
- Largest eigenvalue = "dominant" component/direction

Powers of Matrices

What happens:

- A symmetric matrix can be written as:

$$
\mathbf{A}=\mathbf{U D U}^{\mathrm{T}}=\mathbf{U}\left(\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right) \mathbf{U}^{\mathrm{T}}
$$

- Taking it to the k-th power yields:

$$
\mathbf{A}^{k}=\mathbf{U D U}^{\mathrm{T}} \mathbf{U D U}^{\mathrm{T}} \cdots \mathbf{U D U}^{\mathrm{T}}=\mathbf{U}\left(\begin{array}{lll}
\lambda_{1}^{k} & & \\
& \ddots & \\
& & \lambda_{n}^{k}
\end{array}\right) \mathbf{U}^{\mathrm{T}}
$$

- EV's key to understanding powers of matrices

Generalization: SVD

Singular value decomposition:

- For any real matrix A

$$
\mathbf{A}=\mathbf{U} \mathbf{D} \mathbf{V}^{\mathrm{T}}
$$

- U, V are orthogonal
- D is a diagonal
- Diagonal entries σ_{i} : "singular values"
- U and \mathbf{V} are different in general
- For symmetric matrices, they are the same
- Then: singular values = eigenvalues
- Analogous for linear operators (∞-dim)

Singular Value Decomposition

Singular value decomposition

orthogonal
"the Swiss army knife of linear algebra"

Comparison: Diagonalization

Eigenvalue decomposition (diagonalization)

(For symmetric matrices)

Singular Value Decomposition

SVD Solver

- For full rank, square A:

$$
\begin{aligned}
& \mathbf{A}=\mathbf{U} \mathbf{D} V^{\mathrm{T}} \\
\Rightarrow & \mathbf{A}^{-1}=\left(\mathrm{U} \mathrm{DV}^{\mathrm{T}}\right)^{-1}=\left(\mathrm{V}^{\mathrm{T}}\right)^{-1} \mathrm{D}^{-1}\left(\mathrm{U}^{-1}\right)=\mathrm{V} \mathrm{D}^{-1} \mathbf{U}^{\mathrm{T}}
\end{aligned}
$$

- Numerically very stable
- More expensive than iterative solvers
- General A possible (least-squares / pseudo-inverse)
- More later

